Ken Hayworth believes that he can live forever.

But first he has to die.

"If your body stops functioning, it starts to eat itself," he explains to me one drab morning this spring, "so you have to shut down the enzymes that destroy the tissue." If all goes according to plan, he says cheerfully, "I'll be a perfect fossil." Then one day, not too long from now, his consciousness will be revived on a computer. By 2110, Hayworth predicts, mind uploading—the transfer of a biological brain to a silicon-based operating system—will be as common as laser eye surgery is today.

It's the kind of scheme you expect to encounter in science fiction, not an Ivy League laboratory. But little is conventional about Hayworth, 41, a veteran of NASA's Jet Propulsion Laboratory and a self-described "outlandishly futuristic thinker." While a graduate student at the University of Southern California, he built a machine in his garage that changed the way brain tissue is cut and imaged in electron microscopes. The combination of technical smarts and entrepreneurial gumption earned him a grant from the McKnight Endowment Fund for Neuroscience, a subsidiary of the McKnight Foundation, and an invitation to Harvard, where he stayed, on a postdoctoral fellowship, until April.

To understand why Hayworth wants to plastinate his own brain you have to understand his field—connectomics, a new branch of neuroscience. A connectome is a complete map of a brain's neural circuitry. Some scientists believe that human connectomes will one day explain consciousness, memory, emotion, even diseases like autism, schizophrenia, and Alzheimer's—the cures for which might be akin to repairing a wiring error. In 2010 the National Institutes of Health established the Human Connectome Project, a $40-million, multi-institution effort to study the field's medical potential.